
How to optimize a
slow Postgres query

@LukasFittl
hachyderm.io/@lukas

1. Let’s pick a slow query!
2. Debugging why a query is slow
3. Benchmarking with EXPLAIN (ANALYZE, BUFFERS)
4. Planner costing, and why it can never be perfect
5. JOIN order and parameterized index scans
6. Guiding the planner to the right plan
7. Query Tuning with pganalyze

Let’s pick a slow
query!

Why is our database spending so much
[I/O Time | CPU Time | …]?

WITH input AS (...)
SELECT *
 FROM query_fingerprints AS f
 JOIN input USING (database_id, fingerprint, postgres_role_id)

auto_explain + pganalyze

WITH input AS (...)
SELECT *
 FROM query_fingerprints AS f
 JOIN input USING (database_id, fingerprint, postgres_role_id)

 -> Nested Loop (cost=0.57..19.30 rows=1 width=45) (actual rows=3624 loops=1)
 Buffers: shared hit=19534 read=4214 dirtied=145
 I/O Timings: read=1033.376
 -> CTE Scan on input_1 (cost=0.00..0.20 rows=10 width=60) (actual rows=4442 loops=1)
 CTE Name: input
 -> Index Only Scan using … on public.query_fingerprints f (cost=0.57..1.91 rows=1 width=37) (…)
 Index Cond: ((…))
 Heap Fetches: 2603
 Buffers: shared hit=19534 read=4214 dirtied=145
 I/O Timings: read=1033.376

EXPLAIN

Debugging why a
query is slow

Is the query always slow, or just sometimes?

1.4s average vs 14.6 s outlier execution

I/O Time is often the issue!

Cloud Database Provider I/O Latency can be bad
(local NVMe disks = much much better)

Is the plan the same, or does it change?

Plan Fingerprints show changes in plan structure

Slow
Query

Benchmark
Query with

EXPLAIN
ANALYZE

It’s Slow!

Slow
Query

Benchmark
Query with

EXPLAIN
ANALYZE

Form a Thesis
on What To

Change

It’s Slow!

Slow
Query

Benchmark
Query with

EXPLAIN
ANALYZE

Form a Thesis
on What To

Change

Try Out The
Change

It’s Slow!

Slow
Query

Benchmark
Query with

EXPLAIN
ANALYZE

Form a Thesis
on What To

Change

Try Out The
Change

Make the
change

permanent

It’s Fast!

It’s Slow!

Benchmarking with
EXPLAIN
(ANALYZE, BUFFERS)

Slow
Query

Benchmark
Query with

EXPLAIN
ANALYZE

Form a Thesis
on What To

Change

Try Out The
Change

It’s Slow!

EXPLAIN without ANALYZE
= The plan the planner chose (but no actual statistics)

EXPLAIN (ANALYZE)
= The plan chosen + runtime statistics

EXPLAIN(ANALYZE, BUFFERS)
= The plan chosen + runtime statistics + I/O statistics

postgres=# EXPLAIN SELECT * FROM test WHERE c = 123;
 QUERY PLAN

 Gather (cost=1000.00..97366.28 rows=1 width=8)
 Workers Planned: 2
 -> Parallel Seq Scan on test (cost=0.00..96366.18 rows=1 width=8)
 Filter: (c = 123)
(4 rows)

postgres=# EXPLAIN ANALYZE SELECT * FROM test WHERE c = 123;
 QUERY PLAN
--

 Gather (cost=1000.00..97366.28 rows=1 width=8) (actual time=307.117..307.328
rows=1 loops=1)
 Workers Planned: 2
 Workers Launched: 2
 -> Parallel Seq Scan on test (cost=0.00..96366.18 rows=1 width=8) (actual
time=250.789..283.322 rows=0 loops=3)
 Filter: (c = 123)
 Rows Removed by Filter: 3333333
 Planning Time: 0.189 ms
 Execution Time: 307.371 ms
(8 rows)

postgres=# EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM test WHERE c = 456;
 QUERY PLAN
--

 Gather (cost=1000.00..97366.28 rows=1 width=8) (actual time=303.560..304.600
rows=1 loops=1)
 Workers Planned: 2
 Workers Launched: 2
 Buffers: shared hit=2757 read=41531
 I/O Timings: shared read=95.324
 -> Parallel Seq Scan on test (cost=0.00..96366.18 rows=1 width=8) (actual
time=256.848..286.938 rows=0 loops=3)
 Filter: (c = 456)
 Rows Removed by Filter: 3333333
 Buffers: shared hit=2757 read=41531
 I/O Timings: shared read=95.324
 Planning Time: 0.231 ms
 Execution Time: 304.649 ms
(12 rows)

BUFFERS shows you the impact of the physical
contents of the table (i.e. dead rows, empty space)

1 buffer = 8 kB buffer page
(on most Postgres installs)

Planner costing,
and why
it can never be perfect

Slow
Query

Benchmark
Query with

EXPLAIN
ANALYZE

Form a
Thesis on What

To Change

Try Out The
Change

It’s Slow!

“The planner's task is fuzzy, there can be many
valid plans for the same query, and its not always
clear which one is best.”
- Tom Lane in “Hacking the Query Planner” at PGCon ’11

https://www.pgcon.org/2011/schedule/attachments/188_Planner%20talk.pdf

Postgres planner responsibilities:
1. Find a good query plan.
2. Don't spend too much time (or memory) finding it.
3. Support the extensible aspects of Postgres.

What the planner doesn’t do:
- Find all possible query plans

(it discards seemingly worse plans quickly)
- Change a plan when its expectations don’t hold true

(e.g. a lot more rows match than expected)
- Keep track of execution performance

(it will happily keep producing slow queries)

Cost estimation is what
really drives the planner’s behavior. […]

If it generates and rejects the plan you want,
you need to fix the cost estimation. […]

“Garbage in, garbage out” applies here!
- Tom Lane

Startup cost:
Effort to get the first row from the node
(matters a lot for LIMIT queries)

-> Index Scan using myindex on mytable
 (cost=0.56..11859.55 rows=10608 width=53)

-> Index Scan using myindex on mytable
 (cost=0.56..11859.55 rows=10608 width=53)

Total cost:
What the planner aims to minimize

-> Index Scan using myindex on mytable
 (cost=0.56..11859.55 rows=10608 width=53)

Output row count:
Needed to estimate sizes of upper joins

-> Index Scan using myindex on mytable
 (cost=0.56..11859.55 rows=10608 width=53)

Average row width:
Estimate workspace for sorts, hashes
that store the node's output

What Is “Cost”?

Not a specific unit,
think of it as the “currency” that
the planner operates in when it

does cost-based search

What is the cost of a Sequential Scan?

/*
 * cost_seqscan
 * Determines and returns the cost of scanning a relation sequentially.
 */
void
cost_seqscan(Path *path, PlannerInfo *root,
 RelOptInfo *baserel, ParamPathInfo *param_info)
{
 …
 /*
 * disk costs
 */
 disk_run_cost = spc_seq_page_cost * baserel->pages;

 /* CPU costs */
 …

 /* Adjust costing for parallelism, if used. */
 …

 path->startup_cost = startup_cost;
 path->total_cost = startup_cost + cpu_run_cost + disk_run_cost;
}

src/backend/optimizer/path/costsize.c

https://github.com/postgres/postgres/blob/9f91344223aad903ff70301f40183691a89f6cd4/src/backend/optimizer/path/costsize.c#L227

What is the cost of an Index Scan?

/*
* cost_index
* Determines and returns the cost of scanning a relation using an index.
…
* In addition to rows, startup_cost and total_cost, cost_index() sets the
* path's indextotalcost and indexselectivity fields. These values will be
* needed if the IndexPath is used in a BitmapIndexScan.
*/
void
cost_index(IndexPath *path, PlannerInfo *root, double loop_count,
 bool partial_path)
{
…
 /*
 * Call index-access-method-specific code to estimate the processing cost
 * for scanning the index, as well as the selectivity of the index (ie,
 * the fraction of main-table tuples we will have to retrieve) and its
 * correlation to the main-table tuple order.
 */
 amcostestimate(root, path, loop_count,
 &indexStartupCost, &indexTotalCost,
 &indexSelectivity, &indexCorrelation,
 &index_pages);

src/backend/optimizer/path/costsize.c

https://github.com/postgres/postgres/blob/9f91344223aad903ff70301f40183691a89f6cd4/src/backend/optimizer/path/costsize.c#L492

void btcostestimate(…)
{
 /*
 * For a btree scan, only leading '=' quals plus inequality quals for the
 * immediately next attribute contribute to index selectivity (these are
 * the "boundary quals" that determine the starting and stopping points of
 * the index scan).
 */
 indexBoundQuals = …

 /*
 * If the index is partial, AND the index predicate with the
 * index-bound quals to produce a more accurate idea of the number of
 * rows covered by the bound conditions.
 */
 selectivityQuals = add_predicate_to_index_quals(index, indexBoundQuals);

 btreeSelectivity = clauselist_selectivity(root, selectivityQuals,
 index->rel->relid,
 JOIN_INNER,
 NULL);
 numIndexTuples = btreeSelectivity * index->rel->tuples;
…
 costs.numIndexTuples = numIndexTuples;
 genericcostestimate(root, path, loop_count, &costs);

src/backend/utils/adt/selfuncs.c

https://github.com/postgres/postgres/blob/9f91344223aad903ff70301f40183691a89f6cd4/src/backend/utils/adt/selfuncs.c#L6640

Selectivity is the hard part
- Tom Lane

/*
 * clauselist_selectivity -
 * Compute the selectivity of an implicitly-ANDed list of boolean
 * expression clauses. The list can be empty, in which case 1.0
 * must be returned. List elements may be either RestrictInfos
 * or bare expression clauses --- the former is preferred since
 * it allows caching of results.
 *
 * The basic approach is to apply extended statistics first, on as many
 * clauses as possible, in order to capture cross-column dependencies etc.
 * The remaining clauses are then estimated by taking the product of their
 * selectivities, but that's only right if they have independent
 * probabilities, and in reality they are often NOT independent even if they
 * only refer to a single column. So, we want to be smarter where we can.
 * …
 */
Selectivity
clauselist_selectivity(PlannerInfo *root, List *clauses, int varRelid, JoinType
jointype, SpecialJoinInfo *sjinfo)
{
…
}

src/backend/optimizer/path/clausesel.c

https://github.com/postgres/postgres/blob/9f91344223aad903ff70301f40183691a89f6cd4/src/backend/optimizer/path/clausesel.c#L102

Selectivity also determines
how many rows are estimated to be
returned from a plan node
(not just how expensive that node’s cost is)

Seq Scan on mytable (… rows=1500, width=32)
 Filter: (mytable.user_id = 123)

rows = total_rows * selectivity

The most typical bad row estimate on a scan is
due to clauses not actually being independent.

a = 1 AND b = 1 AND c = 1 AND d = 1 AND e = 1

But what if all “a=1” also have “b=1”?

Or there are no “c=1” that have “d=1”?

To improve simple scan selectivity,
use CREATE STATISTICS

(extended statistics)

Nested Loop (… rows=1, width=24)
 Seq Scan on mytable (rows=1500 width=32)
 Seq Scan on othertable (rows=100 width=16)

join_selectivity = eqjoinselinner(…)

Join Estimates Are Complicated
(and often wrong)

/*
 * eqjoinsel_inner --- eqjoinsel for normal inner join
 *
 * We also use this for LEFT/FULL outer joins; it's not presently clear
 * that it's worth trying to distinguish them here.
 */
static double
eqjoinsel_inner(…)
{
 double selec;

 if (have_mcvs1 && have_mcvs2)
 {
 /*
 * We have most-common-value lists for both relations. Run through
 * the lists to see which MCVs actually join to each other with the
 * given operator. This allows us to determine the exact join
 * selectivity for the portion of the relations represented by the MCV
 * lists. We still have to estimate for the remaining population, but
 * in a skewed distribution this gives us a big leg up in accuracy.
 * …
 */

src/backend/optimizer/path/clausesel.c

https://github.com/postgres/postgres/blob/9f91344223aad903ff70301f40183691a89f6cd4/src/backend/optimizer/path/clausesel.c#L102

To improve join selectivity (in some cases),
increase the both table column’s statistics targets,

to collect more MCVs

New pganalyze
EXPLAIN Insight:

Inefficient Nested Loop

-> Nested Loop (cost=0.25..181.76 rows=1 width=152)
 (actual rows=1007)

Both the lower Aggregate and the Index Only Scan
had somewhat accurate row estimates.

But yet the Nested Loop estimate is wildly off,
causing the upper Aggregate to run 1656 times,
instead of the expected 1 time.

JOIN order and
parameterized
Index Scans

Nested Loop Join (A B)

Seq Scan on A Index Scan on idx_b

Nested Loop Join (A B)

Seq Scan on A Index Scan on B

Nested Loop Join ((A B) C)

Index Scan on C

Nested Loop Join (A C)

Seq Scan on A Index Scan on C

Nested Loop Join ((A C) B)

Index Scan on B

((A B) C)

= Join Order

First join A with B, then
join the result of that with C

(A leftjoin B on (Pab)) leftjoin C on (Pbc)

“Pab” = Predicate (aka JOIN condition)
that references only columns from A and B

or, with join type and conditions:

Joining lots of tables becomes expensive
to analyze, fast.

n-way join could potentially have
n! (n factorial) different join orders

If you join 12 or more tables, the genetic query
optimizer (GEQO) is used by default

3 Essential Choices that cause
“Good” vs “Bad” plans for the same query:

1.Scan Methods
2.Join Order
3.Join Methods

You can detect Join Order in captured EXPLAINs:

((A B) C) ((A C) B)vs

EXPLAIN SELECT *
 FROM t1
 JOIN t2 ON (t1.id = t2.t1_id)
 WHERE t1.field = '123';

 QUERY PLAN
———
 Hash Join (cost=13.74..37.26 rows=5 width=88)
 Hash Cond: (t2.t1_id = t1.id)
 -> Seq Scan on t2 (cost=0.00..20.70 rows=1070 width=48)
 -> Hash (cost=13.67..13.67 rows=6 width=40)
 -> Bitmap Heap Scan on t1 (…)
 Recheck Cond: (field = '123'::text)
 -> Bitmap Index Scan on t1_field_idx (…)
 Index Cond: (field = '123'::text)

How can we restrict (or filter) a scan to a portion of the table’s data?

1. Have an expression that uses fixed constant values
(e.g. “WHERE NOT deleted_at”)

2. Have a parameter value (or constant) passed from the client
(e.g. “WHERE user_id = $1”)

3. Filter based on another table’s output, as part of a JOIN
(e.g. “JOIN orgs ON (orgs.id = user.org_id)”)

=> (1) and (2) are always eligible for an Index Scan.

=> (3) is only eligible when the Index Scan can be a
Parameterized Index Scan (Inner Side of a Nested Loop)

EXPLAIN SELECT *
 FROM t1
 JOIN t2 ON (t1.id = t2.t1_id)
 WHERE t1.field = '123';

 QUERY PLAN
———
 Nested Loop (cost=0.55..16.60 rows=1 width=30)
 -> Index Scan using t1_field_idx on t1 (…)
 Index Cond: (field = '123'::text)
 -> Index Scan using t2_t1_id_idx on t2 (…)
 Index Cond: (t1_id = t1.id)

Parameterized Index Scan

Parameterized Index Scans
must be on the inner side of a Nested Loop.

(Join order matters!)

Guiding the planner
to the right plan

Slow
Query

Benchmark
Query with

EXPLAIN
ANALYZE

Form a Thesis
on What To

Change

Try Out The
Change

It’s Slow!

To Understand
Why A “Bad” Plan Was Chosen
Start By Forcing The Good Plan

SELECT * FROM test
WHERE object_id = 123 Planner

Good
Plan

Planner
Good
Plan

Bad
Plan

Cost=250

Cost=300

SELECT * FROM test
WHERE object_id = 123

Planner

Planner

Good
Plan

Bad
Plan

SELECT * FROM test
WHERE object_id = 123

SELECT * FROM test
WHERE object_id = 456

Planner

Good
Plan

Bad
Plan

SELECT * FROM test
WHERE object_id = 456

Planner

Good
Plan

Bad
Plan

Cost=500

Cost=300SELECT * FROM test
WHERE object_id = 456

The easiest test:

If your bad plan
involves a planner feature,

turn it off.

Index
Scan

Seq
Scan Cost=500Cost=300

SET enable_seqscan = off

Index
Scan

Seq
Scan Cost=500Cost=10000000000.00

Once you have the right plan,
look at the individual plan nodes

and find out where the
cost mis-estimate originates

If you see a Hash or Merge Join being used instead
of a Nested Loop + Parameterized Index Scan, try:

SET enable_mergejoin = off;
SET enable_hashjoin = off;

For more complicated cases,
Utilize pg_hint_plan to force the good plan
(to find the root cause of the cost mis-estimate)

EXPLAIN SELECT EXISTS (
 SELECT 1 FROM schema_column_stats scs WHERE scs.invalidated_at_snapshot_id IS NULL AND scs.table_id IN (
 SELECT id FROM schema_tables WHERE invalidated_at_snapshot_id IS NULL AND database_id = 12345));

 QUERY PLAN

Result (cost=9.13..9.14 rows=1 width=1)
 InitPlan 1 (returns $1)
 -> Nested Loop (cost=1.00..971672.56 rows=119623 width=0)
 -> Index Only Scan using index_schema_column_stats_on_table_id on schema_column_stats scs
 (cost=0.43..372676.50 rows=23553966 width=8)
 -> Memoize (cost=0.57..0.61 rows=1 width=8)
 Cache Key: scs.table_id
 Cache Mode: logical
 -> Index Scan using schema_tables_pkey on schema_tables (cost=0.56..0.60 rows=1 width=8)
 Index Cond: (id = scs.table_id)
 Filter: ((invalidated_at_snapshot_id IS NULL) AND (database_id = 12345))

Bad plan, with join order = (schema_column_stats schema_tables)

SET enable_memoize = off;

EXPLAIN SELECT EXISTS (
 SELECT 1 FROM schema_column_stats scs WHERE scs.invalidated_at_snapshot_id IS NULL AND scs.table_id IN (
 SELECT id FROM schema_tables WHERE invalidated_at_snapshot_id IS NULL AND database_id = 12345));

 QUERY PLAN

Result (cost=13.13..13.14 rows=1 width=1)
 InitPlan 1 (returns $1)
 -> Nested Loop (cost=0.99..1451807.35 rows=119623 width=0)
 -> Index Scan using schema_tables_database_id_schema_name_table_name_idx on schema_tables

 (cost=0.56..37778.03 rows=34753 width=8)
 Index Cond: (database_id = 12345)
 -> Index Only Scan using index_schema_column_stats_on_table_id on schema_column_stats scs
 (cost=0.43..26.68 rows=1401 width=8)
 Index Cond: (table_id = schema_tables.id)

Good plan, with join order = (schema_tables schema_column_stats)

/*+ Leading((scs schema_tables)) IndexOnlyScan(scs index_schema_column_stats_on_table_id) IndexScan(schema_tables
schema_tables_pkey) Set(enable_memoize off) */
EXPLAIN SELECT EXISTS (
 SELECT 1 FROM schema_column_stats scs WHERE scs.invalidated_at_snapshot_id IS NULL AND scs.table_id IN (
 SELECT id FROM schema_tables WHERE invalidated_at_snapshot_id IS NULL AND database_id = 12345));

 QUERY PLAN

Result (cost=122.90..122.91 rows=1 width=1)
 InitPlan 1 (returns $1)
 -> Nested Loop (cost=0.99..14582869.23 rows=119623 width=0)
 -> Index Only Scan using index_schema_column_stats_on_table_id on schema_column_stats scs

 (cost=0.43..372676.50 rows=23553966 width=8)
 -> Index Scan using schema_tables_pkey on schema_tables (cost=0.56..0.60 rows=1 width=8)
 Index Cond: (id = scs.table_id)
 Filter: ((invalidated_at_snapshot_id IS NULL) AND (database_id = 12345))

Bad plan, with join order = (schema_tables schema_column_stats)

 -> Nested Loop (cost=1.00..971672.56 rows=119623 width=0)
 -> Index Only Scan using index_schema_column_stats_on_table_id on schema_column_stats scs
 (cost=0.43..372676.50 rows=23553966 width=8)

 -> Nested Loop (cost=0.99..14582869.23 rows=119623 width=0)
 -> Index Only Scan using index_schema_column_stats_on_table_id on schema_column_stats scs

 (cost=0.43..372676.50 rows=23553966 width=8)

 -> Nested Loop (cost=0.99..1451807.35 rows=119623 width=0)
 -> Index Scan using schema_tables_database_id_schema_name_table_name_idx on schema_tables

 (cost=0.56..37778.03 rows=34753 width=8)

Good plan:
1,451,807 cost

Bad plan without Memoize:
14,582,869 cost

Bad plan with Memoize:
971,672 cost

1. For simple scan selectivity, look into CREATE STATISTICS
2. For join selectivity, try increasing statistics target
3. Review cost settings (e.g. random_page_cost)
4. Create multi-column indexes that

align with the planner’s biases (e.g. for bounded sorts)
5. For complex queries with surprising join order,

try forcing materialization (WITH x AS MATERIALIZED…)
6. For multi-tenant apps, consider adding more explicit

clauses like “WHERE customer_id = 123”

6 ways to guide the planner:

If you can, choose
Better Statistics
over
Planner Hints

Query Tuning
with pganalyze

Let’s start with a trace of a slow web request

Let’s start with a trace of a slow web request

Multiple Mis-Estimates of Nested Loops

Under Estimate

Under Estimate

Under Estimate

Index Scan in a Loop takes 99% of I/O Time

Let’s Tune The Query!

Let’s Tune The Query!

Automatic Naming of Parameters

Paste a query sample to extract parameters

Benchmark the same query,
with different parameters

We’ve recorded the Baseline

Why are the plans different?

Different Join Order

CTE fingerprints
-> Nested Loop (cost=1.84..1140.04 rows=1 width=45) (actual time=0.166..428.961 rows=31973 loops=1)
 -> Nested Loop (cost=1.27..1137.25 rows=1 width=16) (actual time=0.157..349.766 rows=31973 loops=1)
 -> Index Scan using index_query_table_associations_on_database_id_and_table_name on public.query_table_associations qta (cost=0.70..327.43 rows=290 width=8) (actual
time=0.022..64.070 rows=128992 loops=1)
 -> Index Scan using index_query_occurrences_on_query_id on public.query_occurrences o (cost=0.57..2.79 rows=1 width=8) (actual time=0.002..0.002 rows=0 loops=128992)
 -> Index Scan using query_fingerprints_query_id_idx on public.query_fingerprints qf (cost=0.57..2.77 rows=1 width=45) (actual time=0.002..0.002 rows=1 loops=31973)

CTE fingerprints
-> Nested Loop (cost=1.84..8.14 rows=1 width=45) (actual time=0.058..2.619 rows=56 loops=1)
 -> Nested Loop (cost=1.27..7.52 rows=1 width=53) (actual time=0.032..1.473 rows=244 loops=1)
 -> Index Scan using index_query_table_associations_on_database_id_and_table_name on public.query_table_associations qta (cost=0.70..4.72 rows=1 width=8) (actual
time=0.021..0.288 rows=244 loops=1)
 -> Index Scan using query_fingerprints_query_id_idx on public.query_fingerprints qf (cost=0.57..2.79 rows=1 width=45) (actual time=0.004..0.004 rows=1 loops=244)
 -> Index Scan using index_query_occurrences_on_query_id on public.query_occurrences o (cost=0.57..0.61 rows=1 width=8) (actual time=0.004..0.004 rows=0 loops=244)

Use query variants to test hypothesis

Use query variants to test hypothesis

thanks!

PGANALYZE.COM

PGANALYZE.COM/BLOGPGANALYZE.COM/RESOURCES

Get a free trial of pganalyze

Get free pganalyze eBooks and Postgres blog posts
PGANALYZE.COM/NEWSLETTER

https://pganalyze.com
https://pganalyze.com/blog
https://pganalyze.com/resources
https://pganalyze.com/newsletter

